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Abstract 
We consider the problems of predicting, classifying, and 
annotating friends relations in friends networks, based upon 
network structure and user profile data.  First, we document a data 
model for the blog service LiveJournal, and define a set of 
machine learning problems such as predicting existing links and 
estimating inter-pair distance.  Next, we explain how the problem 
of classifying a user pair in a social network, as directly 
connected or not, poses the problem of selecting and constructing 
relevant features.  We document feature analyzers for attributes 
that depend only on graph attributes, those that depend on 
individual user demographics and set-valued attributes (e.g., 
interests, communities, and educational institutions), and those 
that depend on candidate user pairs.  We then extend our data 
model using whole-network attributes and report machine 
learning experiments on learning the concept of a connected pair 
of friends from LiveJournal data.  Finally, we develop a theory of 
dependent types for deriving causal explanations and discuss how 
this can be used to scale statistical relational learning up to our 
full corpus, a recent crawl of over a million records from 
LiveJournal.   
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1. Introduction 
Analysis of friends networks provides a basis for understanding 
the web of influence [Ko01] in social media.   In particular, the 
problems of determining the existence of links and of classifying 
and annotating known links are first steps toward identifying 
potential relationships.  This inferred information can in turn be 
used to introduce new potential friends to one another, make basic 
recommendations such as community recruits or moderator 
candidates, or identify whole cliques and communities.   

In this paper, we consider the problem of discovering links in an 
incomplete graph. We present an approach to link prediction that 
is based on graph feature analysis and intrinsic attributes of 
entities (users and communities).  We report some promising 
preliminary results on radius-limited neighborhoods of the 

blogging service LiveJournal and discuss the results of 
exploratory experiments that point toward a need to differentiate 
the types of features in a friends network, namely: 

1. those that depend on the demographics of the entire network 
2. those that are computable for each user or each pair of user 
3. those that depend on the existence of a reported, inferred, or 

suspected link 

We derive some such features and discuss the costs of computing, 
selecting, and recombining them.  Of particular interest in the 
domain of commercial weblogs and social media are demographic 
features relevant to collaborative recommendation of goods and 
formation of branding communities.  The structural dependence 
and context-specific dependence of features determines what new 
features are feasible to construct, both in terms of statistical 
sufficiency and computational complexity. 

In conclusion, we examine some new features that were derived 
by hand, discuss the algorithms used to compute them, and relate 
these specific algorithms to a broader class of relational database 
queries that form the basis of a more powerful feature 
construction system. 

2. Background 
2.1 Friends Networks from User Profiles 
Social network services such as MySpace and Facebook allow 
users to list interests and link to friends, sometimes annotating 
these links by designating trust levels or qualitative ratings for 
selected friends.  Some such services, such as Google’s Orkut, are 
community-centric; others, such as the video blogging service 
YouTube and the photo service Flickr, emphasize social media; 
while some, such as Six Apart’s LiveJournal and Vox, are 
organized around text-and-image weblogs.  LiveJournal and its 
derivative services, such as GreatestJournal, DeadJournal, and 
JournalFen, are based on the same open-source server code.  At 
the time of this writing, there are over 11.7 million LiveJournal 
accounts, 1.8 million of them active. 

The friends network of LiveJournal, our topic of study, has two 
varieties of accounts: users and communities (we omit RSS 
feeds).   One advantageous property of its data model, stemming 
from a common schema for the two account types (which could 
originally be converted from user to community), is that it 
provides a simple, flexible representation for entities and 
relations.  



Start End Link Denotes 

User User Trust or friendship 

User Community Readership or 
subscribership 

Community User Membership, posting 
access, maintainer 

Community Community Obsolete 

Table 1. Types of links in the blog service LiveJournal. 

Table 1 shows the types of links in LiveJournal and their 
constituent attributes.  Friendship is an asymmetric relation 
between two accounts, each represented by a vertex in a directed 
graph.  The type of the start and endpoint defines the relationship 
set attributes of the link.  For example, a user u who adds another 
user v to his or her friends list can specify the membership in any 
of up to 30 groups.  These serve the dual purpose of blog 
aggregation (posts from each group’s members are filtered into its 
aggregator page, which u can read or make public) and groups-
based security (each group denotes a read/comment access control 
list).  Access control lists for communities are associated with 
memberships (community-to-user links), while content is 
controlled by posters or subscribers.  A user can “watch” a 
community in order to add all accessible posts to a main 
aggregator page or to custom groups.  The set of accessible posts 
consists of either public posts only, or public and restricted 
(members-only) posts.  The access control list is defined by the 
membership relation and individual posters’ selections (whether 
to allow comments and whether to display them by default from 
no readers, all readers, non-anonymous readers, or community 
members).  Acquisition of privileges is a community property, of 
which only membership may be acquired solely by user action 
(“joining” a community), if the moderator has specified open 
membership.  

 
Figure 1. LiveJournal access control list maintenance 

(community moderator interface). 
Thus, a reciprocal link between a user and a community means 
that the user both subscribes to the community and is an approved 
member.  Links from user u to v are listed in the “Friends” list of 
u and in an optionally displayed “Friends Of” list of v.  This list 

can be partitioned into reciprocal and non-reciprocal sublists for a 
user u: 

Mutual Friends: { v | (v, u) ∈ E ∧ (u, v) ∈ E } 

Also Friend Of: { v | (v, u) ∈ E ∧ (u, v) ∉ E } 

The community analogue of the “Friends Of” list is the 
“Watched By“ (subscriber) list, whose members have the 
community name listed in the “Friends: Communities” sections of 
their individual user profile pages.  The community analogue of 
the “Friends” list is the “Members” list. 

The friends network for LiveJournal consists of a very large 
central connected component and many small islands, most of 
which are singleton users.  There are a few source vertices, 
corresponding to accounts that link to others but have no 
reciprocated friendships; these are usually RSS or blog aggregator 
accounts owned by individuals.  Additionally, there are sink 
vertices corresponding to accounts watched by others, but which 
have named no friends.  Some of these are channels for 
announcement or dissemination of creative work. 

2.2 Link Identification 
In previous work [HKP+06], we introduced a link prediction 
problem for LiveJournal: given a graph in which the existence of 
a candidate link is hidden (elided if it exists), classify it as present 
or absent given all other attributes of the graph and of the 
endpoints.  Our initial approach to link identification consisted of 
dividing friends network features into graph features and interest-
based features. 

Graph features could be computed simply by scanning the graph, 
in the case of pair-distance metrics, performing all-pairs shortest 
path (APSP) search: 

1. Indegree of u: popularity of the user 

2. Indegree of v: popularity of the candidate 

3. Outdegree of u: number of other friends besides the 
candidate; saturation of friends list 

4. Outdegree of v: number of existing friends of the 
candidate besides the user; correlates loosely with 
likelihood of a reciprocal link 

5. Number of mutual friends w such that u → w ∧ w → v 

6. “Forward deleted distance“: minimum alternative 
distance from u to v in the graph without the edge (u, v) 

7. Backward distance from v to u in the graph  

These were supplemented by interest-based features: 

8. Number of mutual interests between u and v 

9. Number of interests listed by u 

10. Number of interests listed by v 

11. Ratio of the number of mutual interests to the number 
listed by u 

12. Ratio of the number of mutual interests to the number 
listed by v  



2.3 Efficient feature analysis 
The degree attributes can be enumerated in time linear in the 
number of users, as can the mutual friends count for each pair of 
users. 

Forward deleted distance measures the distance from u to v by 
alternate routes, after the edge (u, v) is elided. The prediction task 
is thus to reconstruct the incomplete graph resulting from this 
erasure, to determine whether a particular link (u, v) existed.   
Forward deleted distance can be precomputed exhaustively for the 
entire graph in Θ(|E| (|V| + |E|)) = Θ(|E|2) time by erasing each 
edge in E and re-running a breadth-first search from the start 
vertex.  If a candidate edge is not stored in the resulting cache, its 
deleted distance is that found by BFS on the original graph, in 
Θ(|V| + |E|) time.  In a graph (V, E), backward distance requires 
Θ(|V| + |E|) using BFS for a particular candidate edge.  Since the 
expected size of the edge set is E[|E|] = k|V|, about k = 20 on 
average across LiveJournal, the bottleneck computation is that of 
forward deleted distance: Θ(|E|2) = Θ(k2|V|2), or Θ(|V|2) with a 
large constant. 

Using a straightforward string pair enumeration and 
comparison algorithm, the mutual interest counts are stored in 
matrix of |V|2 elements, each requiring constant time to check 
(given a maximum of 150 interests).previous work [HKP+06], we 
introduced a link prediction problem for LiveJournal: given a 
graph in which the existence of a candidate link is hidden (elided 
if it exists), classify it as present or absent given all other 
attributes of the graph and of the endpoints.  Our initial approach 
to link identification consisted of dividing friends network 
features into graph features and interest-based features.  

2.4 Methodologies for link mining 
Getoor and Diehl [GD05] recently surveyed techniques for link 
mining, focusing on statistical relational learning approaches and 
emphasizing graphical models representations of link structure. 
Ketkar et al. [KHC05] compare data mining techniques over 
graph-based representations of links to first-order and relational 
representations and learning techniques that are based upon 
inductive logic programming (ILP). 

Sarkar and Moore [SM05] extend the analysis of social networks 
into the temporal dimension by modeling change in link structure 
across discrete time steps, using latent space models and 
multidimensional scaling.  One of the challenges in collecting 
time series data from LiveJournal is the slow rate of data 
acquisition, just as spatial annotation data (such as that found in 
LJ maps and the “plot your friends on a map meme) is relatively 
incomplete.  

2.5 Other applications using graph mining 
Popescul and Ungar [PU03] learn a kind of entity-relational 
model from data in order to predict links. Hill [Hi03] and 
Bhattacharya and Getoor [BG04] similarly use statistical 
relational learning from data in order to resolve identity 
uncertainty, particularly coreferences and other redundancies 
(also called deduplication).  Resig et al. [RDHT04] use a large 
(200000-user) crawl of LiveJournal to annotate a social network 
of instant messaging users, and explore the approach of predicting 
online times as a function of friends graph degree. 

There have been numerous recent applications of social network 
mining based on the text and headers of e-mail. One notable 
research project by McCallum et al. [MCW05] uses the Enron e-
mail corpus and infers roles and topic categories based on link 
analysis   A primary goal of this work is to extend the graph 
mining approach beyond link prediction and recommendation 
towards link explanation and annotation. 

It may be much more useful to explain why a group of friends in a 
blog service created accounts en masse or added one another as 
friends than to recommend relationship sets that are already extant 
or structured according to a preexistent social group.  For 
example, high school classmates often create accounts and 
encourage their peers to join the same service.  In a few cases, this 
is encouraged or facilitated by a teacher, for a class project.  
Solving the problem of link prediction is not particularly useful in 
this case, because the user decisions have already been made or 
strongly constrained; however, it may be very useful to link other 
classmates not working on the same project to the same 
relationship set (perhaps they were encouraged to join the blog 
service by students who continued to use it after the class project).  

Large groups such as web comic subscriberships, community co-
members, etc. are also somewhat identifiable, and relating 
members of a blog service to one another through relationship sets 
is a typical entity-relational data modeling operation that can be 
made more robust and efficient through graph feature extraction.  

3. Experiment Design 
3.1 LJCrawler v2 
To acquire the graph structure and attributes describe in the 
previous section, we developed an HTTP-based spider called 
LJCrawler to harvest user information from LiveJournal    A 
multithreaded version of this program, which retrieves BML data 
published by Denga (the owners of LiveJournal), collects an 
average of up to 15 records per second, traversing the social 
network depth-first and archiving the results in a master index 
file.  Because LiveJournal’s functionality for looking up users by 
user number is only available to administrators, we decided to 
compile a list of seeds for a disjoint-set representation of the 
disconnected social network.  For purposes of this experiment, 
however, starting from just one seed (the first author’s 
LiveJournal ID) and restricting the crawl to one connected 
component was sufficient. 

Using LJCrawler, we compiled an adjacency list and the 
following ground features for each user: 

• Account type (user, community) 

• Interest list 

• School list 

• Communities watched list 

• Community membership list  

• Friends of list 

• Friends list 



3.2 Feature Analyzers 
We define a single example to be a candidate edge (u, v) in the 
underlying directed graph of the social network, along with a set 
of descriptive features calculated from the annotated graph 
recorded by LJCrawler: 

Other features: Additional planned features for continuing 
experiments include dates (update frequencies when taken 
differentially), user options such as maximum friends count, and 
content descriptors of LiveJournal entries and comments (average 
post length, word frequency, etc.).  

3.3 Graph Search Algorithms for Computing 
Features 
Computing the minimum forward and backward distances can be 
done more efficiently by using breadth-first search.  Currently, a 
Java implementation of this algorithm requires under one minute 
on a 2GHz AMD Opteron system to process a 2000-node graph.  
However, enumerating all possible candidate pairs within a 
neighborhood of 2 nodes (1.6 million pairs for 4000 nodes) 
requires several hours on the same system. 

We note that the amortized cost of running BFS to 
precompute all-pairs shortest paths (APSP) with the actual edge 
deleted (which is necessary to avoid knowing the prediction target 
in link predicton) is Θ(|E| (|V| + |E|)).  This is prohibitively large 
even for our “mid-sized” subgraphs of 10-50K nodes; when |V| is 
about 11 million, |E| is a little over 200 million, enumerating 
APSP is completely infeasible.  However, we do not typically 
consider all of E, so the bottleneck is typically the first step plus a 
constant number of calls to BFS, requiring running time in Θ(k  
(|V| + |E|)).  

3.4 Generating Candidates 
We considered several alternative ways to generate candidate 
edges (u, v): 

The first technique is likely to be unscalable, as the number of 
candidates is |V|2.  The second requires having a representatively 
large sample of the full LiveJournal social network, in order to fit 
the distribution parameters accurately.  The third was the most 
straightforward to implement.  Two calls to the all pairs shortest 
path algorithm provided cost matrix, and one pass at each radius 
up to a maximum of 10 yielded the data shown in Table 2. To 
simplify the initial experiments, we defined the classification 
problem to be classification of d(u, v) as 1 or 2. 

This task is actually useful for social network recommender 
systems because discrimination of a direct friend from a “friend of 
a friend” (FOAF) is functionally similar to recommending FOAFs 
to link to directly.  There are more detailed classification targets, 
such as placement, promotion, and demotion of linked friends 
within strata of trust (setting, increasing, and decreasing the 
security level), but choosing a user’s friends to begin with is the 
more fundamental decision.  

Table 2 and Table 3 report the distribution of inter-vertex 
distances in the friends network for two subnetworks induced by 
limiting the maximum number of nodes. 

 

 

Distance d Frequency       
(= d) 

Cumulative 
(≤ d) 

1 6204 6204 
2 107307 113511 
3 69896 183407 
4 59926 243333 
5 3400 246733 
6 255 246988 
7 16 247004 
8 1 247005 
9 0 0 

10 0 0 
∞ 9731 256735 

Table 2.  Number of candidate edges for the 1000-node 
LiveJournal graph. 

Distance d Frequency       
(= d) 

Cumulative 
(≤ d) 

1 19410 19410 
2 370568 389978 
3 403075 793053 
4 520373 1313426 
5 123747 1437173 
6 18453 1455626 
7 2657 1458283 
8 339 1458622 
9 29 1458651 

10 0 1458651 
∞ 174534 1633185 

Table 3.  Number of candidate edges for the 4000-node 
LiveJournal graph. 

4. Results 
4.1 Preliminary experiment: 941-node version 
In a preliminary experiment, we constructed a 941-node 
subgraph, defining the concept IsFriendOf and trained three types 
of inducers with: 

1. all attributes 

2. all graph attributes excluding the forward and backward 
distances 

3. the backward distances alone 

4. the backward and forward distances alone 

5. interest-related attributes alone. 

Table 4 and Table 5 show the results for three inducers: the J48 
decision tree inducer, Holte’s 1R inducer (a single-rule classifier 
based on a single attribute) [Ho93], and the Logistic regression 
inducer.  All accuracy measures were collected over 10-fold 
cross-validated runs.  The J48 output wth all features achieves a 
significant boost over the next highest (distance only).  

 



Inducer All NoDist BkDist Dist Interest 
J48 98.2 94.8 95.8 97.6 88.5 
OneR 95.8 92.0 95.8 95.8 88.5 
Logistic 91.6 90.9 88.3 88.9 88.4 
Table 4.  Percent accuracy for predicting all classes using the 

941-node graph. 

Inducer All NoDist BkDist Dist Interest 
J48 89.5 65.7 67.7 83.0 5.4 
OneR 67.7 41.1 67.7 67.7 4.5 
Logistic 38.3 33.3 0 4.5 4.5 

Table 5.  Precision (true positives to all positives) using the 941-
node graph. 

4.2 Experiments on restricted graphs 
We developed an application, ljclipper, to restrict the overall 
friends graph to that induced by a subset of nodes of fixed 
number, found using breadth-first search starting from a given 
seed.  Using a 4000-node subgraph summarized in Table 3, we 
generated 1633185 candidate edges.  Note that all forward 
distances are greater than 1: when u and v are actually connected, 
we erase (u, v).  In preliminary experiments, we then computed 
the length of the shortest alternative path.  This is, however, a less 
scalable approach, because the asymptotic running time is 
dominated by the superlinear time required to compute 

The complete listing of all twelve features is given in Section 2.2.  
The numerical types of all of the network features – both the ones 
describing the graph and those measuring and interests and ratios 
– makes data set amenable to logistic regression.   

Inducer Accuracy Precision Recall 
J48 99.9 97.5 96.1 
OneR 99.6 91.7 91.8 
Table 6. Percent accuracy, precision and recall using a 1000-

node graph (10-fold CV). 

Inducer Accuracy Precision Recall 
J48 99.8 95.8 92.0 
OneR 99.7 91.1 89.9 
Table 7. Percent accuracy, precision and recall using a 2000-

node graph (10-fold CV). 

Inducer Accuracy Precision Recall 
J48 99.8 94.5 88.3 
OneR 99.7 88.2 84.3 
Table 8.  Percent accuracy, precision and recall using a 4000-

node graph (10-fold CV). 

Table 6 through Table 8 show the accuracy, precision, and recall 
for the 1000, 2000, and 4000-node friends graphs.  Trends of 
higher precision than recall, and diminishing precision and recall 
as the network grows larger, are observed.  These trends are 
sustained for subsamples of size 10000 and size 100000, though 
precision and recall also diminish slightly with sampling.  

4.3 Data acquisition and larger experiments 
The crawler has been improved with several service-specific 
optimizations for fetching user info pages.  Presently these do not 
use LiveJournal’s BML feed of user data, which is incomplete for 

our purposes (that is, not all ground attributes in our initial 
relations are provided).  At press time, this crawler processes 
about 20000 user records per hour and thus would require over a 
week to crawl LiveJournal. 

The current bottleneck is the Θ(|V| (|V| + |E|)) step described in 
Section 3.3.  This is the dominant term, because the constant k 
denoting the number of candidate edges is usually much smaller 
than n, e.g., 100-1000, so that Θ(k  (|V| + |E|)) is not only in Θ (|V| 
+ |E|), but actually just a few hundred times the cost of a single 
BFS.  

4.4 Interpretation 
Using mutual interests alone, even with normalization based on 
the number of interests in u and v, results in very poor prediction 
accuracy using all inducers with which we experimented.  
Intermediate results are achieved using mutual friends count and 
degree (NoDist: 65.7% on predicting edges) and using forward 
deleted distance and backward distance (Dist: 67.7%).  Using all 
12 computed graph and annotation features resulted in the highest 
precision (All: 89.5%) and accuracy (All: 98.2%). 

We note that LiveJournal once used a variant of normalized 
mutual interests to produce a list of potential friends, arranged in 
decreasing order of match quality.  Although this was not the 
same type of recommender system as LJMiner supports, it shows 
that the state of the art user matching systems have a lot of room 
for improvement.  The results indicate that features produced by 
LJMiner, used with a good inducer, can generate collaborative 
and structural recommendations.  

5. Continuing Work 
Scaling up: Our current research focuses on scaling up to tens of 
thousands and eventually millions of users. Crawling over 11-12 
million records is at least technically feasible, but scaling up the 
graph analyzers is a challenge that may best be met with heuristic 
search. 

Learning relational models:  A promising area of research is the 
recovery of relational graphical models, including class-level 
(membership and reference slot) uncertainty. [GFKT02] LJMiner 
has yielded a ready source of semistructured data for both 
structure learning and distribution learning.  Another potentially 
useful approach is to organize users and communities into clusters 
using this relational model.  We have developed schemas for blog 
posts (entries, threads, comments) and for users and dynamic 
groups of users.  This is related to previous preliminary work on 
relational data mining for personalization of web portals, 
especially computational grid portals. [HBJ03].  Much of the 
relational metadata in the bioinformatics domain comes from 
description languages for workflows and workflow components 
[Hs04].  The next step in our experimental plan is to use schemas 
such as our detailed ones for blog sevice users and bioinformatics 
information and computational grid users [Hs05] to learn a richer 
predictive model.  Finally, modeling relational data as it persists 
or changes across time is an important challenge.  
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