
ICWSM'2007 Boulder, Colorado, USA

Structural Link Analysis from User Profiles
and Friends Networks: A Feature Construction Approach

William H. Hsu Joseph Lancaster Martin S.R. Paradesi Tim Weninger
Department of Computing and Information Sciences, Kansas State University

234 Nichols Hall
Manhattan, KS 66506-2302

+1 785 5326350

{bhsu | joseph | pmsr | weninger}@ksu.edu

Abstract
We consider the problems of predicting, classifying, and
annotating friends relations in friends networks, based upon
network structure and user profile data. First, we document a data
model for the blog service LiveJournal, and define a set of
machine learning problems such as predicting existing links and
estimating inter-pair distance. Next, we explain how the problem
of classifying a user pair in a social network, as directly
connected or not, poses the problem of selecting and constructing
relevant features. We document feature analyzers for attributes
that depend only on graph attributes, those that depend on
individual user demographics and set-valued attributes (e.g.,
interests, communities, and educational institutions), and those
that depend on candidate user pairs. We then extend our data
model using whole-network attributes and report machine
learning experiments on learning the concept of a connected pair
of friends from LiveJournal data. Finally, we develop a theory of
dependent types for deriving causal explanations and discuss how
this can be used to scale statistical relational learning up to our
full corpus, a recent crawl of over a million records from
LiveJournal.

General Terms
Algorithms, Experimentation

Keywords
data mining, link analysis, machine learning, social network
analysis, user profiling.

1. Introduction
Analysis of friends networks provides a basis for understanding
the web of influence [Ko01] in social media. In particular, the
problems of determining the existence of links and of classifying
and annotating known links are first steps toward identifying
potential relationships. This inferred information can in turn be
used to introduce new potential friends to one another, make basic
recommendations such as community recruits or moderator
candidates, or identify whole cliques and communities.

In this paper, we consider the problem of discovering links in an
incomplete graph. We present an approach to link prediction that
is based on graph feature analysis and intrinsic attributes of
entities (users and communities). We report some promising
preliminary results on radius-limited neighborhoods of the

blogging service LiveJournal and discuss the results of
exploratory experiments that point toward a need to differentiate
the types of features in a friends network, namely:

1. those that depend on the demographics of the entire network
2. those that are computable for each user or each pair of user
3. those that depend on the existence of a reported, inferred, or

suspected link

We derive some such features and discuss the costs of computing,
selecting, and recombining them. Of particular interest in the
domain of commercial weblogs and social media are demographic
features relevant to collaborative recommendation of goods and
formation of branding communities. The structural dependence
and context-specific dependence of features determines what new
features are feasible to construct, both in terms of statistical
sufficiency and computational complexity.

In conclusion, we examine some new features that were derived
by hand, discuss the algorithms used to compute them, and relate
these specific algorithms to a broader class of relational database
queries that form the basis of a more powerful feature
construction system.

2. Background
2.1 Friends Networks from User Profiles
Social network services such as MySpace and Facebook allow
users to list interests and link to friends, sometimes annotating
these links by designating trust levels or qualitative ratings for
selected friends. Some such services, such as Google’s Orkut, are
community-centric; others, such as the video blogging service
YouTube and the photo service Flickr, emphasize social media;
while some, such as Six Apart’s LiveJournal and Vox, are
organized around text-and-image weblogs. LiveJournal and its
derivative services, such as GreatestJournal, DeadJournal, and
JournalFen, are based on the same open-source server code. At
the time of this writing, there are over 11.7 million LiveJournal
accounts, 1.8 million of them active.

The friends network of LiveJournal, our topic of study, has two
varieties of accounts: users and communities (we omit RSS
feeds). One advantageous property of its data model, stemming
from a common schema for the two account types (which could
originally be converted from user to community), is that it
provides a simple, flexible representation for entities and
relations.

Start End Link Denotes

User User Trust or friendship

User Community Readership or
subscribership

Community User Membership, posting
access, maintainer

Community Community Obsolete

Table 1. Types of links in the blog service LiveJournal.

Table 1 shows the types of links in LiveJournal and their
constituent attributes. Friendship is an asymmetric relation
between two accounts, each represented by a vertex in a directed
graph. The type of the start and endpoint defines the relationship
set attributes of the link. For example, a user u who adds another
user v to his or her friends list can specify the membership in any
of up to 30 groups. These serve the dual purpose of blog
aggregation (posts from each group’s members are filtered into its
aggregator page, which u can read or make public) and groups-
based security (each group denotes a read/comment access control
list). Access control lists for communities are associated with
memberships (community-to-user links), while content is
controlled by posters or subscribers. A user can “watch” a
community in order to add all accessible posts to a main
aggregator page or to custom groups. The set of accessible posts
consists of either public posts only, or public and restricted
(members-only) posts. The access control list is defined by the
membership relation and individual posters’ selections (whether
to allow comments and whether to display them by default from
no readers, all readers, non-anonymous readers, or community
members). Acquisition of privileges is a community property, of
which only membership may be acquired solely by user action
(“joining” a community), if the moderator has specified open
membership.

Figure 1. LiveJournal access control list maintenance

(community moderator interface).
Thus, a reciprocal link between a user and a community means
that the user both subscribes to the community and is an approved
member. Links from user u to v are listed in the “Friends” list of
u and in an optionally displayed “Friends Of” list of v. This list

can be partitioned into reciprocal and non-reciprocal sublists for a
user u:

Mutual Friends: { v | (v, u) ∈ E ∧ (u, v) ∈ E }

Also Friend Of: { v | (v, u) ∈ E ∧ (u, v) ∉ E }

The community analogue of the “Friends Of” list is the
“Watched By“ (subscriber) list, whose members have the
community name listed in the “Friends: Communities” sections of
their individual user profile pages. The community analogue of
the “Friends” list is the “Members” list.

The friends network for LiveJournal consists of a very large
central connected component and many small islands, most of
which are singleton users. There are a few source vertices,
corresponding to accounts that link to others but have no
reciprocated friendships; these are usually RSS or blog aggregator
accounts owned by individuals. Additionally, there are sink
vertices corresponding to accounts watched by others, but which
have named no friends. Some of these are channels for
announcement or dissemination of creative work.

2.2 Link Identification
In previous work [HKP+06], we introduced a link prediction
problem for LiveJournal: given a graph in which the existence of
a candidate link is hidden (elided if it exists), classify it as present
or absent given all other attributes of the graph and of the
endpoints. Our initial approach to link identification consisted of
dividing friends network features into graph features and interest-
based features.

Graph features could be computed simply by scanning the graph,
in the case of pair-distance metrics, performing all-pairs shortest
path (APSP) search:

1. Indegree of u: popularity of the user

2. Indegree of v: popularity of the candidate

3. Outdegree of u: number of other friends besides the
candidate; saturation of friends list

4. Outdegree of v: number of existing friends of the
candidate besides the user; correlates loosely with
likelihood of a reciprocal link

5. Number of mutual friends w such that u → w ∧ w → v

6. “Forward deleted distance“: minimum alternative
distance from u to v in the graph without the edge (u, v)

7. Backward distance from v to u in the graph

These were supplemented by interest-based features:

8. Number of mutual interests between u and v

9. Number of interests listed by u

10. Number of interests listed by v

11. Ratio of the number of mutual interests to the number
listed by u

12. Ratio of the number of mutual interests to the number
listed by v

2.3 Efficient feature analysis
The degree attributes can be enumerated in time linear in the
number of users, as can the mutual friends count for each pair of
users.

Forward deleted distance measures the distance from u to v by
alternate routes, after the edge (u, v) is elided. The prediction task
is thus to reconstruct the incomplete graph resulting from this
erasure, to determine whether a particular link (u, v) existed.
Forward deleted distance can be precomputed exhaustively for the
entire graph in Θ(|E| (|V| + |E|)) = Θ(|E|2) time by erasing each
edge in E and re-running a breadth-first search from the start
vertex. If a candidate edge is not stored in the resulting cache, its
deleted distance is that found by BFS on the original graph, in
Θ(|V| + |E|) time. In a graph (V, E), backward distance requires
Θ(|V| + |E|) using BFS for a particular candidate edge. Since the
expected size of the edge set is E[|E|] = k|V|, about k = 20 on
average across LiveJournal, the bottleneck computation is that of
forward deleted distance: Θ(|E|2) = Θ(k2|V|2), or Θ(|V|2) with a
large constant.

Using a straightforward string pair enumeration and
comparison algorithm, the mutual interest counts are stored in
matrix of |V|2 elements, each requiring constant time to check
(given a maximum of 150 interests).previous work [HKP+06], we
introduced a link prediction problem for LiveJournal: given a
graph in which the existence of a candidate link is hidden (elided
if it exists), classify it as present or absent given all other
attributes of the graph and of the endpoints. Our initial approach
to link identification consisted of dividing friends network
features into graph features and interest-based features.

2.4 Methodologies for link mining
Getoor and Diehl [GD05] recently surveyed techniques for link
mining, focusing on statistical relational learning approaches and
emphasizing graphical models representations of link structure.
Ketkar et al. [KHC05] compare data mining techniques over
graph-based representations of links to first-order and relational
representations and learning techniques that are based upon
inductive logic programming (ILP).

Sarkar and Moore [SM05] extend the analysis of social networks
into the temporal dimension by modeling change in link structure
across discrete time steps, using latent space models and
multidimensional scaling. One of the challenges in collecting
time series data from LiveJournal is the slow rate of data
acquisition, just as spatial annotation data (such as that found in
LJ maps and the “plot your friends on a map meme) is relatively
incomplete.

2.5 Other applications using graph mining
Popescul and Ungar [PU03] learn a kind of entity-relational
model from data in order to predict links. Hill [Hi03] and
Bhattacharya and Getoor [BG04] similarly use statistical
relational learning from data in order to resolve identity
uncertainty, particularly coreferences and other redundancies
(also called deduplication). Resig et al. [RDHT04] use a large
(200000-user) crawl of LiveJournal to annotate a social network
of instant messaging users, and explore the approach of predicting
online times as a function of friends graph degree.

There have been numerous recent applications of social network
mining based on the text and headers of e-mail. One notable
research project by McCallum et al. [MCW05] uses the Enron e-
mail corpus and infers roles and topic categories based on link
analysis A primary goal of this work is to extend the graph
mining approach beyond link prediction and recommendation
towards link explanation and annotation.

It may be much more useful to explain why a group of friends in a
blog service created accounts en masse or added one another as
friends than to recommend relationship sets that are already extant
or structured according to a preexistent social group. For
example, high school classmates often create accounts and
encourage their peers to join the same service. In a few cases, this
is encouraged or facilitated by a teacher, for a class project.
Solving the problem of link prediction is not particularly useful in
this case, because the user decisions have already been made or
strongly constrained; however, it may be very useful to link other
classmates not working on the same project to the same
relationship set (perhaps they were encouraged to join the blog
service by students who continued to use it after the class project).

Large groups such as web comic subscriberships, community co-
members, etc. are also somewhat identifiable, and relating
members of a blog service to one another through relationship sets
is a typical entity-relational data modeling operation that can be
made more robust and efficient through graph feature extraction.

3. Experiment Design
3.1 LJCrawler v2
To acquire the graph structure and attributes describe in the
previous section, we developed an HTTP-based spider called
LJCrawler to harvest user information from LiveJournal A
multithreaded version of this program, which retrieves BML data
published by Denga (the owners of LiveJournal), collects an
average of up to 15 records per second, traversing the social
network depth-first and archiving the results in a master index
file. Because LiveJournal’s functionality for looking up users by
user number is only available to administrators, we decided to
compile a list of seeds for a disjoint-set representation of the
disconnected social network. For purposes of this experiment,
however, starting from just one seed (the first author’s
LiveJournal ID) and restricting the crawl to one connected
component was sufficient.

Using LJCrawler, we compiled an adjacency list and the
following ground features for each user:

• Account type (user, community)

• Interest list

• School list

• Communities watched list

• Community membership list

• Friends of list

• Friends list

3.2 Feature Analyzers
We define a single example to be a candidate edge (u, v) in the
underlying directed graph of the social network, along with a set
of descriptive features calculated from the annotated graph
recorded by LJCrawler:

Other features: Additional planned features for continuing
experiments include dates (update frequencies when taken
differentially), user options such as maximum friends count, and
content descriptors of LiveJournal entries and comments (average
post length, word frequency, etc.).

3.3 Graph Search Algorithms for Computing
Features
Computing the minimum forward and backward distances can be
done more efficiently by using breadth-first search. Currently, a
Java implementation of this algorithm requires under one minute
on a 2GHz AMD Opteron system to process a 2000-node graph.
However, enumerating all possible candidate pairs within a
neighborhood of 2 nodes (1.6 million pairs for 4000 nodes)
requires several hours on the same system.

We note that the amortized cost of running BFS to
precompute all-pairs shortest paths (APSP) with the actual edge
deleted (which is necessary to avoid knowing the prediction target
in link predicton) is Θ(|E| (|V| + |E|)). This is prohibitively large
even for our “mid-sized” subgraphs of 10-50K nodes; when |V| is
about 11 million, |E| is a little over 200 million, enumerating
APSP is completely infeasible. However, we do not typically
consider all of E, so the bottleneck is typically the first step plus a
constant number of calls to BFS, requiring running time in Θ(k
(|V| + |E|)).

3.4 Generating Candidates
We considered several alternative ways to generate candidate
edges (u, v):

The first technique is likely to be unscalable, as the number of
candidates is |V|2. The second requires having a representatively
large sample of the full LiveJournal social network, in order to fit
the distribution parameters accurately. The third was the most
straightforward to implement. Two calls to the all pairs shortest
path algorithm provided cost matrix, and one pass at each radius
up to a maximum of 10 yielded the data shown in Table 2. To
simplify the initial experiments, we defined the classification
problem to be classification of d(u, v) as 1 or 2.

This task is actually useful for social network recommender
systems because discrimination of a direct friend from a “friend of
a friend” (FOAF) is functionally similar to recommending FOAFs
to link to directly. There are more detailed classification targets,
such as placement, promotion, and demotion of linked friends
within strata of trust (setting, increasing, and decreasing the
security level), but choosing a user’s friends to begin with is the
more fundamental decision.

Table 2 and Table 3 report the distribution of inter-vertex
distances in the friends network for two subnetworks induced by
limiting the maximum number of nodes.

Distance d Frequency
(= d)

Cumulative
(≤ d)

1 6204 6204
2 107307 113511
3 69896 183407
4 59926 243333
5 3400 246733
6 255 246988
7 16 247004
8 1 247005
9 0 0

10 0 0
∞ 9731 256735

Table 2. Number of candidate edges for the 1000-node
LiveJournal graph.

Distance d Frequency
(= d)

Cumulative
(≤ d)

1 19410 19410
2 370568 389978
3 403075 793053
4 520373 1313426
5 123747 1437173
6 18453 1455626
7 2657 1458283
8 339 1458622
9 29 1458651

10 0 1458651
∞ 174534 1633185

Table 3. Number of candidate edges for the 4000-node
LiveJournal graph.

4. Results
4.1 Preliminary experiment: 941-node version
In a preliminary experiment, we constructed a 941-node
subgraph, defining the concept IsFriendOf and trained three types
of inducers with:

1. all attributes

2. all graph attributes excluding the forward and backward
distances

3. the backward distances alone

4. the backward and forward distances alone

5. interest-related attributes alone.

Table 4 and Table 5 show the results for three inducers: the J48
decision tree inducer, Holte’s 1R inducer (a single-rule classifier
based on a single attribute) [Ho93], and the Logistic regression
inducer. All accuracy measures were collected over 10-fold
cross-validated runs. The J48 output wth all features achieves a
significant boost over the next highest (distance only).

Inducer All NoDist BkDist Dist Interest
J48 98.2 94.8 95.8 97.6 88.5
OneR 95.8 92.0 95.8 95.8 88.5
Logistic 91.6 90.9 88.3 88.9 88.4
Table 4. Percent accuracy for predicting all classes using the

941-node graph.

Inducer All NoDist BkDist Dist Interest
J48 89.5 65.7 67.7 83.0 5.4
OneR 67.7 41.1 67.7 67.7 4.5
Logistic 38.3 33.3 0 4.5 4.5

Table 5. Precision (true positives to all positives) using the 941-
node graph.

4.2 Experiments on restricted graphs
We developed an application, ljclipper, to restrict the overall
friends graph to that induced by a subset of nodes of fixed
number, found using breadth-first search starting from a given
seed. Using a 4000-node subgraph summarized in Table 3, we
generated 1633185 candidate edges. Note that all forward
distances are greater than 1: when u and v are actually connected,
we erase (u, v). In preliminary experiments, we then computed
the length of the shortest alternative path. This is, however, a less
scalable approach, because the asymptotic running time is
dominated by the superlinear time required to compute

The complete listing of all twelve features is given in Section 2.2.
The numerical types of all of the network features – both the ones
describing the graph and those measuring and interests and ratios
– makes data set amenable to logistic regression.

Inducer Accuracy Precision Recall
J48 99.9 97.5 96.1
OneR 99.6 91.7 91.8
Table 6. Percent accuracy, precision and recall using a 1000-

node graph (10-fold CV).

Inducer Accuracy Precision Recall
J48 99.8 95.8 92.0
OneR 99.7 91.1 89.9
Table 7. Percent accuracy, precision and recall using a 2000-

node graph (10-fold CV).

Inducer Accuracy Precision Recall
J48 99.8 94.5 88.3
OneR 99.7 88.2 84.3
Table 8. Percent accuracy, precision and recall using a 4000-

node graph (10-fold CV).

Table 6 through Table 8 show the accuracy, precision, and recall
for the 1000, 2000, and 4000-node friends graphs. Trends of
higher precision than recall, and diminishing precision and recall
as the network grows larger, are observed. These trends are
sustained for subsamples of size 10000 and size 100000, though
precision and recall also diminish slightly with sampling.

4.3 Data acquisition and larger experiments
The crawler has been improved with several service-specific
optimizations for fetching user info pages. Presently these do not
use LiveJournal’s BML feed of user data, which is incomplete for

our purposes (that is, not all ground attributes in our initial
relations are provided). At press time, this crawler processes
about 20000 user records per hour and thus would require over a
week to crawl LiveJournal.

The current bottleneck is the Θ(|V| (|V| + |E|)) step described in
Section 3.3. This is the dominant term, because the constant k
denoting the number of candidate edges is usually much smaller
than n, e.g., 100-1000, so that Θ(k (|V| + |E|)) is not only in Θ (|V|
+ |E|), but actually just a few hundred times the cost of a single
BFS.

4.4 Interpretation
Using mutual interests alone, even with normalization based on
the number of interests in u and v, results in very poor prediction
accuracy using all inducers with which we experimented.
Intermediate results are achieved using mutual friends count and
degree (NoDist: 65.7% on predicting edges) and using forward
deleted distance and backward distance (Dist: 67.7%). Using all
12 computed graph and annotation features resulted in the highest
precision (All: 89.5%) and accuracy (All: 98.2%).

We note that LiveJournal once used a variant of normalized
mutual interests to produce a list of potential friends, arranged in
decreasing order of match quality. Although this was not the
same type of recommender system as LJMiner supports, it shows
that the state of the art user matching systems have a lot of room
for improvement. The results indicate that features produced by
LJMiner, used with a good inducer, can generate collaborative
and structural recommendations.

5. Continuing Work
Scaling up: Our current research focuses on scaling up to tens of
thousands and eventually millions of users. Crawling over 11-12
million records is at least technically feasible, but scaling up the
graph analyzers is a challenge that may best be met with heuristic
search.

Learning relational models: A promising area of research is the
recovery of relational graphical models, including class-level
(membership and reference slot) uncertainty. [GFKT02] LJMiner
has yielded a ready source of semistructured data for both
structure learning and distribution learning. Another potentially
useful approach is to organize users and communities into clusters
using this relational model. We have developed schemas for blog
posts (entries, threads, comments) and for users and dynamic
groups of users. This is related to previous preliminary work on
relational data mining for personalization of web portals,
especially computational grid portals. [HBJ03]. Much of the
relational metadata in the bioinformatics domain comes from
description languages for workflows and workflow components
[Hs04]. The next step in our experimental plan is to use schemas
such as our detailed ones for blog sevice users and bioinformatics
information and computational grid users [Hs05] to learn a richer
predictive model. Finally, modeling relational data as it persists
or changes across time is an important challenge.

Acknowledgements
We thank Todd Easton and Kirsten Hildrum for helpful
discussions concerning algorithms and the LiveJournal data
model. We also thank Andrew King and Tejaswi Pydimarri for
contributions to the original LJMiner system and Vikas Bahirwani
for contributions to the second version.

References
[BG04] I. Bhattacharya & L. Getoor. Deduplication and group
detection using links. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD) Workshop on Link Analysis and Group Detection
(LinkKDD2004), Seattle, WA, USA, August 22-25, 2004.

[CLRS02] T. H. Cormen, C. E. Leiserson, R. L. Rivest, & C.
Stein. Introduction to Algorithms, Second Edition. Cambridge,
MA: MIT Press, 2002.

[GD05] L. Getoor & C. P. Diehl. Link mining: a survey.
SIGKDD Explorations, Special Issue on Link Mining, 7(2):3-12.

[GFKT02] L. Getoor, N. Friedman, D. Koller, & B. Taskar.
Learning Probabilistic Models of Link Structure. Journal of
Machine Learning Research, 2002.

[HBJ03] W. H. Hsu, P. Boddhireddy, & R. Joehanes. Using
probabilistic relational models for collaborative filtering. In
Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI) Workshop on Statistical Learning of
Relational Models (SRL), Acapulco, MEXICO, August, 2003.

[Hi03] S. Hill. Social network relational vectors for anonymous
identity matching In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI) Workshop on
Statistical Learning of Relational Models (SRL), Acapulco,
MEXICO, August, 2003.

[Ho93] R. C. Holte. Very Simple Classification Rules Perform
Well on Most Commonly Used Datasets. Machine Learning,
11(1):63-90.

[Hs04] W. H. Hsu. Relational graphical models of computational
workflows for data mining. In Proceedings of the International
Conference on Semantics of a Networked World: Semantics for
Grid Databases (ICSNW-2004), p. 309-310, Paris, FRANCE,
June, 2004.

[Hs05] W. H. Hsu. Relational graphical models for collaborative
filtering and recommendation of computational workflow
components. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI) Workshop on Multi-
Agent Information Retrieval and Recommender Systems,
Edinburgh, UK, July 31, 2005.

[HKP+06] W. H. Hsu, A. King, M. S. R. Paradesi, T. Pydimarri,
& T. Weninger. Collaborative and Structural Recommendation of
Friends using Weblog-based Social Network Analysis. In
Proceedings of the 2006 AAAI Spring Symposium on
Computatational Approaches to Analyzing Weblogs (CAAW
2006).

[KHC05] N. S. Ketkar, L. B. Holder, & D. J. Cook. Comparison
of graph-based and logic-based multi-relational data mining.
SIGKDD Explorations, Special Issue on Link Mining, 7(2):64-71.

[Ko01] D. Koller. Representation, Reasoning and Learning.
IJCAI Computers and Thought Award Lecture, 2001.

[MCW05] A. McCallum, A. Corrada-Emmanuel, & X. Wang.
Topic and role discovery in social networks. In Proceedings of
the International Joint Conference on Artificial Intelligence
(IJCAI), Edinburgh, UK, August, 2005.

[MH04] M. Mukherjee & L. B. Holder. Graph-based data mining
on social networks. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD) Workshop on Link Analysis and Group Detection
(LinkKDD2004), Seattle, WA, USA, August 22-25, 2004.

[PU03] A. Popescul & L. H. Ungar. Statistical relational learning
for link prediction. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI) Workshop on
Statistical Learning of Relational Models (SRL), Acapulco,
MEXICO, August, 2003.

[RDHT04] J. Resig, S. Dawara, C. M. Homan, & A. Teredesai.
Extracting social networks from instant messaging populations.
In Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD) Workshop on Link
Analysis and Group Detection (LinkKDD2004), Seattle, WA,
USA, August 22-25, 2004.

[SM05] P. Sarkar & A. Moore. Dynamic social network analysis
using latent space models. SIGKDD Explorations, Special Issue
on Link Mining, 7(2):31-40.

